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Abstract

A new model of the mechanical stress development associated with an expanded freezing zone and its subsequent
thawing is presented. The model is different in that it computes stresses properly by considering only strains that
occur after solidification. A closed-form solution of the model is derived and results of a parametric study for
typical parameters and conditions of cryosurgery around a spherical cryoprobe are presented. Results show that the
stress distributions during the thawing stage are very different than those during freezing. Furthermore, it is shown
that significant stresses remain in the frozen region during thawing, and even when the temperature distribution
decays to the phase transition temperatures. The distributions are qualitatively consistent with limited cracking at
the cryoprobe surface during freezing and large scale cracking during thawing, which were observed during
validation testing of cryoprobes in water and gelatin solutions. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well known that freezing biological tissues can introduce severe damage. Sometimes this damage
is intentional and desired, as in cryosurgery. In other situations, such as cryopreservation, this damage is
an undesired byproduct. Mechanical stresses that develop during the freezing of biological solutions and
tissues have been identified as one cause of tissue damage. In attempting to simulate cryosurgery and
cryopreservation, mechanical stress development has been analyzed by a number of researchers
(Rubinsky et al., 1980; Rubinsky, 1982; Lin et al., 1990; Gao et al., 1995; Rabin and Steif, 1996). While
mechanical stress is one mechanism of tissue destruction in cryobiology applications (Ishiguro and
Rubinsky, 1994; Hunt et al., 1994; Gao et al., 1995; Rabin et al., 1996, 1997a), there are other
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destruction mechanisms related to crystal growth and to mass transfer at the cellular level (Meryman,
1974; Mazur, 1984; Taylor, 1987).

Unfortunately, predictions of mechanical stresses are inconsistent with one important observation of
tissue destruction: in cryopreservation applications, severe fractures often form at the early stages of
thawing and not as commonly expected during freezing (Pegg, 1996). Comparable observations in the
context of cryosurgical applications will be discussed in this paper. This inconsistency has prompted us
to re-examine the assumptions underlying the models of freezing tissues presented to date. It is our
belief, now, that behavior at the freezing front has not been properly modeled heretofore. Specifically,
all stresses should be zero at an expanding freezing front. Any (volume preserving) strain that occurs
while the material is still in the liquid state cannot contribute to the stress. Therefore, material which
has just solidified at an expanding freezing front, must start with zero stress. We note that the zero
stress condition at the freezing front has been well appreciated by workers in the area of metal
solidification and casting (Boley and Weiner, 1963; Tien and Richmond, 1982; Heinlein et al., 1986;
Zabaras and Ruan, 1990; Zabaras et al., 1991).

To simulate an idealized cryopreservation procedure, Rabin and Steif (1998) have recently analyzed
the stresses associated with the inward freezing of a sphere. Their analysis included the condition of zero
stresses at the freezing front; that condition, together with a proper accounting for the hydrostatic
pressure that develops in the contained liquid region, resulted in dramatically different stress
distributions during freezing than had previously been found. This has motivated the present paper
which reconsiders the outward freezing problem simulative of cryosurgical procedures. A closed-form
solution for this model is derived. Results reveal substantial increases in the thermal stresses during
thawing, especially near the freezing front.

2. Observations of fracture during a simulated cryoprocedure

The observations of fracture reported here occurred during validation testing of a new liquid-
nitrogen-based cryosurgical device, which is described in detail elsewhere (Rabin et al., 1997b). The
experiments were performed in pure water and in 1.4% gelatin solution. Similar patterns of fractures
were observed around cylindrical cryoprobes of length from 5 to 100 mm and diameters from 1.4 to 6
mm, as described below. Cooling rates of a few °C min~' and up to about 200°C min~" were measured
at the cryoprobe surface. These cooling rates were maximum at higher temperatures and decay as the
cryoprobe temperature approached the liquid nitrogen boiling temperature. An approximation of the
cooling rate dependency in time is given in the discussion section.

A clear and well defined freezing front was observed as the cryoprobe temperature reached the
freezing temperatures. As the cryoprobe continued cooling down a transparent frozen region developed.
After some period of time, depending on the cryoprobe diameter and cooling rate, an opaque-milkish
region started to form around the cryoprobe, well inside the frozen region. This opaque region, which
contained some microcracks, was well defined and became thicker as the frozen region expanded. The
thickness of this opaque region increased with the cooling rate; it was completely absent at very low
cooling rates, and it approached one third of the frozen region (transparent) thickness for high cooling
rates. This opaque region appeared stable in the sense that it grew steadily and slowly as the freezing
process progressed.

The thawing stage was initiated by shutting off the coolant circulation. Very shortly after (on the
order of s) severe macro-fractures developed, running through the entire frozen region in the radial
direction. These macro fractures were observed prior to any significant reduction in the frozen region
diameter due to thawing. Although the experimental observations described here are only qualitative,
they are inconsistent with previous theoretical calculations (Rubinsky et al., 1980; Rubinsky, 1982; Lin
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et al., 1990; Gao et al., 1995; Rabin and Steif, 1996) which all predict stresses to increase during freezing
and decrease during thawing. The model presented in this paper shows why substantial tensile stresses
develop during thawing.

Since similar observations of cracking during thawing were made for a relatively long cylindrical
cryoprobe and for an almost spherical cryoprobe, it was deemed sufficient to model only the spherical
geometry, which is simpler. Nevertheless, the major conclusions presented below are not expected to
change substantially for a cylindrical cryoprobe. We also note, briefly, that the opaque zone around the
cryoprobe, which contains micro-fractures, can be explained by the presence of plastic strains that occur
when the stress reaches the yield strength of the material. It was indeed predicted by Rabin and Steif
(1996) that plastic strains do develop around the cryoprobe. The plasticity effect in the current problem
is assumed to be minor relative to the macro-fractures that develop during thawing and, therefore, is
ignored in the present model.

3. Analysis

The problem analyzed here simulates the freezing of tissue around a spherical or nearly spherical
cryoprobe, with the tissue surrounding the probe being large compared with probe itself. This is
idealized by taking the probe to be a sphere, occupying the region 0 < r < R; the surrounding tissue
occupies the region R<r < oo. The probe is made to follow a realistic cooling protocol which is set
forth below. Our goal is to predict the stresses that develop as the frozen zone increases. Biological
tissues freeze over a temperature range which is dependent on the chemical content of the cryotreated
tissue and on its cooling history (Miller and Mazur, 1976; Taylor, 1987). When cooling quasi-statically,
the phase transition temperature range is typically between 0 and —22°C (assuming that body fluids
behave like NaCl—-H,O mixture). It is assumed that the frozen tissue can sustain a significant
mechanical load only after the completion of phase transition. Hence the solidus front, which is at
r = h, is defined as the position which is instantaneously at the lower temperature boundary of phase
transition. The solidus front location, as well as the temperature distribution, are assumed to be
determined purely by the bioheat transfer problem, which is presented first, after which the distribution
of stresses is determined.

3.1. Heat transfer problem

Heat transfer is assumed to be governed by the classical bioheat equation:

% = V(kVT) + (T, — T) W

where T is the temperature, H is the volumetric enthalpy, k is thermal conductivity, wy is the production
of the blood perfusion and its volumetric specific heat, and T} is the blood temperature. The initial
temperature distribution is assumed uniform and equal to the blood perfusion temperature. The heat
transfer problem is solved numerically using the numerical scheme presented by Rabin and Shitzer
(1998). The assumed phase transition temperature range and the thermophysical properties are listed in
Table 1.

In order to simulate as closed as possible a typical cryosurgical cooling protocol, the following
cryoprobe temperature forcing function is assumed:

Tr = Ty + (Tixa — Tp)(1 — ™) 2
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Table 1
Typical physical properties of frozen biological tissues

Poisson’s ratio, v 0.33

Thermal expansion coefficient: 5 + ,T B =60 x 107°°C!;
By =2.3 x 1077°C™?

Elastic modulus, E 10 GPa

Blood perfusion temperature, 73 37°C

Phase transition temperature range —22 -0°C

Thermal conductivity of the unfrozen tissue, k 0.5Wm™'°C™!

Thermal conductivity of the frozen tissue, k 20Wm™' °C™!

Specific heat of the unfrozen tissue 3.6 MI m™3 °C™!

Specific heat of the frozen tissue 1.8 M m~3 °C™!

Latent heat 250 MJ m~?

Specific heat source of blood perfusion, 1 25 x 103 s7!

where TR is the cryoprobe temperature, Tpn» is the liquid nitrogen boiling temperature (—196°C at 1
standard atm), and D is a cooling rate constant. Note that such a function is preferable to a step-like
temperature change at the cryoprobe, or even a step-like change in the cryoprobe cooling rate, which
are expected to result in unrealistically high thermal stresses. The range of typical cooling rates is
discussed below. During thawing, the cryoprobe is assumed inactive which is represented by a
mathematical condition of zero heat flux at the cryoprobe surface.

3.2. Solid mechanics problem

The analysis of stresses and strains is predicated on the following observations regarding the
development of stresses. Since the fluid is taken to be inviscid, it can withstand no deviatoric stresses.
We now argue that as the solid-liquid interface advances steadily into the liquid zone, material on the
solid side of this interface must have zero stress. Consider first the case of no sudden expansion due to
phase transition. In this case, the material on the solid side of the interface had zero stress at the
previous instant (when it was liquid); since the interface is steadily advancing, there is no time during
which the material could have strained in the solid state, and hence it must have zero stress in the solid
state. Of course, as the interface progresses, elements that were earlier at the interface can with time
develop stress. That stresses at an advancing interface must be zero is well appreciated in the modeling
of metal solidification (see for example, Zabaras et al., 1991). By contrast, once the interface stops
advancing (as cooling ceases at the cryoprobe in our problem), and even when it eventually moves
backwards, the stresses at the solid side of the interface can evolve with time to become non-zero.

Now, consider the case when a sudden volume expansion due to phase transition can occur. Of course
when the material is unconstrained, this strain can occur with no stresses. In fact, this sudden volume
expansion will have no effect on the stresses in the solid region, because the volume change occurs
through a sudden radial strain but no circumferential strain. The radial strain at the interface is allowed
to take on any value, since the outward expansion is freely accommodated by the outer inviscid liquid.

The key physical quantities in the solid mechanics analysis, the displacements, strains and stresses, are
functions of position and time, just as the temperature. We will be particularly careful in defining
displacements and strains so as to permit a proper accounting for the stresses which develop in the solid
region. Initially, the entire domain outside the cryoprobe is liquid. This state, prior to cooling at the
cryoprobe, is the initial state (at time 1 = 0) from which all displacements and strains are measured. Let
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a material point, which is initially at the point r, be located at the point r’ at time ¢. Hence, r’ is a
function of r and of 7. The radial displacement, u, is defined as the change of radial position of a
material element, that is:

u(r,t) =r'(rt) —r 3)

Notice that all points are liquid at time ¢ = 0, while a point may be either liquid or solid at time 7. The
radial strain ¢ and circumferential strain gy are defined in the usual way with respect to the
displacement u:

o _ 4 4
dr’ &0 r S

& =

Before defining the relations between stresses and strains (the constitutive relations), one important
point needs to be made regarding the strains. Consider a point r which at time ¢z has become solid. For
the purposes of defining the stresses, what is its strain? Say that this element remained liquid up to the
time #*, at which time it solidified. In the time period 0< ¢ < ¢*, this element has strained, yet as a fluid,
this strain can occur without stresses. Or, more precisely, strains involving no volume change (deviatoric
strains) occur without stress, while any change in volume will require a pressure change (inversely
proportional to the compressibility of the fluid). Hence, it will be necessary to keep track of the strain at
which each element solidifies; only strain occurring thereafter contributes to deviatoric stress (the stress
with the pressure subtracted off).

This background indicates the necessity of separating the stress components ¢; into two parts, the
deviatoric stress S; and the hydrostatic pressure p, in the standard fashion:

Likewise the strains must be split into deviatoric e; and hydrostatic parts according to:
1
Ejj = €jj + 56’5[/ (6)

where 0 is the Kroneker index.

The liquid region can sustain hydrostatic pressure only. This liquid pressure has to be uniform,
otherwise flow would occur. Moreover, since the pressure far away can be taken to be zero (or
atmospheric, the base level not affecting the analysis), the pressure everywhere in the fluid must be zero.

Consider now the solid region. As pointed out above, it is necessary to keep track of how much
straining occurs after solidification. With that idea in hand, though, it is still necessary to choose an
appropriate stress—strain relation for the solid. Since cryosurgical procedures occur over a rather short
period of time (on the order of min), viscous or relaxation effects can be neglected. This is in contrast to
cryopreservation in which the material may have stresses for long periods of time during which
relaxation is possible. Compression testing of frozen tissues (Rabin et al., 1996) indicate that the
mechanical stress in the tissues is linearly related to the strain for small strains; as the strain increases to
the level of approximately 0.005, however, the stress begins to fluctuate about a roughly constant value.
This behavior, akin to plasticity, was attributed to the development of macro-cracking in the tissues
(Rabin et al., 1997a). The effect of plasticity was analyzed by Rabin and Steif (1996, 1998); plastic
straining should be confined to the region in the vicinity of the cryoprobe. The effect addressed in this
paper—the rapid increase in stress when thawing begins—involves stresses at the outer portions of the
frozen region; hence, plasticity is not critical to this effect. Accordingly, the present analysis neglects the
plasticity and treats the frozen solid as elastic.
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From the above considerations, we can express the deviatoric stresses in terms of the deviatoric
strains as follows:

Sii = ZG(ey — e;;-), R<r<h (7

where G is the shear modulus, and e¢j is the deviatoric strain of the material element just after
solidification; e} is a function of the position r. Notice that the total strain at a point r may change with
time as the procedure continues, while the quantity ¢} has a single value at the point r. The shear

modulus is related to the Young’s modulus E and the Poisson ratio v by:

E

“= 2+

®)

Notice that the material is assumed to be isotropic; consistent with this assumption, the thermal strains
have zero deviatoric part (the thermal expansion is equal in all directions).
The hydrostatic pressure in the solid is given by:

p = —K(e — en), R<r<h )

where the bulk modulus, «, is related to E and v by:

E
_ 10
T30 ) (10)
The volumetric thermal strain, ey, is defined as:
¢
e =30 =3 | o ()
0

where &, is the linear thermal strain, f is the thermal expansion coefficient, and ¢ is the difference
between the local temperature and the solidus temperature. The thermal expansion coefficient of frozen
biological tissues can be approximated as linearly dependent on temperature, similar to polycrystalline
ice (Rabin et al., 1998).

Finally, the mechanical equilibrium equation specialized to the spherically symmetric geometry is:

do,
dr

+ %(or —09)=0 (12)

Consistent with zero pressure in the unfrozen region, a boundary condition of zero radial stress at the
solidus front is assumed:

a.(h) =0 (13)

Note that, during freezing, the deviatoric stress at the solidus front is zero by definition in this new
formulation, eqn (7). It follows that the hydrostatic pressure also equals zero at the solidus front, eqn (5).

Assuming that the elastic modulus of the cryoprobe is at least two orders of magnitude higher than
that of the frozen tissue (stainless steel for example), the displacement at the cryoprobe outer surface is
assumed to be solely governed by the cryoprobe thermal strain:

AR o (14)

where &g is the thermal strain of the cryoprobe at its outer surface.
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To reduce the above set of equations to a form which can readily be solved numerically, the function
g(r) is introduced:

g(r) = %e;k =(&—e9)", @r=h (15)

We recapitulate the significance of this term: the function g(r) can be seen as a history function of the
process, and proportional to the deviatoric strain which had developed at the point r up to the instant
of its freezing. This strain should not be counted in determining the deviatoric stresses in the frozen
material.

It is now possible to express S, and p in terms of the radial displacement, u, and the various other
known quantities, and to substitute into the equation of equilibrium, eqn (12); the result is:

d (du u 1d dew
4 (=127 ) 46— —(30) — 35— —
(4G + 3k) r< p + r) Gr3 r(r g) 3k p 0 (16)

The solution of this equation is:

3k 1 (", 4G "g gR( R3> B
_ ok dr 4 —2 || Ear—8R(, - & Bir+ 22 17
4G + 3ic 12 JRethr ,+4G+3K|:’ JR P T tor 2 (17)

where By and B, are integration constants and gg is the initial value of the function g at the cryoprobe
surface. Substituting the displacement given by eqn (17), into the strain-displacement relations, eqn (4),
and applying the zero hydrostatic pressure condition at the solidus front, eqn (13), one finds the
integration constant B; to be:

4G "¢ . gn—gr
B=—"_||&
! 4G+3;<UR P (18)

where g, is the value of the function g at the current solidus front location. Integration constant B; is
found by applying boundary condition, eqn (14), into the displacement solution, eqn (17):

By = (e — B1)R (19)

At any instant in time, the history function, g, is known everywhere in the solid domain except at the
current solidus front location. However, this function can be expressed at the current time instant by
substituting eqns (4) and (17) into eqn (15):

1 (4G 4G + 3k h
8h="73 <§R3g1€ + TBZ + 3J et dV) (20)
R

The solution is now well defined implicitly and has to be solved by a predictor-corrector procedure
for the history function value at the solidus front, g;, at the current time point. This is done as follows:
(i) the value g is predicted (0 at the beginning of freezing or the value at the previous time instant
elsewhere); (ii) the constant B; is calculated from eqn (18); (iii) the constant B, is calculated from eqn
(19); (iv) the value of &y is corrected using eqn (20). Stages (ii)—(iv) are repeated until the value g
converges. It is emphasized that, although a close form solution in space is presented, it has to be
calculated incrementally in time for the strain history function, g.
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Final forms for the deviatoric stress and hydrostatic pressure in the frozen region are, respectively:

1 4Gx 3( 16 G*> R B,
S,=—2Sp=——| - = 2 dr —g|l - gr—4G= 21
2™ 4G+3K[ ﬁJ;WJ ren g] 34G+3k PR TS o
and
4Gk "g
- & —gr—ewn | — 3B 22
P 4G+3K|:3Jerr+g Er "“‘} 3By (22)

Consider now the thawing stage. The formulation presented above is valid during thawing as well. It
is now possible, however, for some stress components to be non-zero at the solidus front. Recall that
the deviatoric stresses arise from any difference between the strains at the current instant and the strains
at which that material first froze. During the cooling stage, the solidus front is propagating outwards
continuously; at all times the material at the solidus front has just frozen. As thawing begins, the solidus
front ceases to propagate outward, but the strains everywhere, including at the front, continue to evolve.
Thus, the strain at the front begins to differ from the value it had when first freezing, and deviatoric
stresses can develop.

We continue to invoke the condition of zero radial stress, eqn (13), at the solidus front since the fluid
region continues to have zero stress. During the thawing stage we no longer need to calculate the
function g; its distribution in the solid region was determined during the freezing stage. This leads to a
change in the first constant of integration:

1 12Gk (" g 4Ggpr
B = 28 )dr 4+ 4Ge, R | 4+ - 08k 23
' T 3k 1 AGR [40 T x JR ("’”" ' r) PSSR * 346 1 30 @3)

4. Results and discussion

Parametric studies were performed by a spherical cryoprobe with radius 2.5 mm, using space intervals
of 0.05 mm and time intervals of 2.5 x 107> s, for a freezing period of up to 20 min. The cryoprobe was
assumed to be stainless steel, having an average thermal expansion coefficient of 2 x 107> °C~". Typical
thermophysical properties of the biological tissues were assumed in this study as listed in Table 1.

Fig. 1 shows the cryoprobe temperature forcing function using cooling rate constants, D, of 0.01,
0.02, and 0.03, which are assumed to correspond to low, average, and high power cryoprobes,
respectively. Fig. 2 shows the solidus front location for a freezing/thawing cycle consisting of 20 min of
cooling followed by free thawing driven by heat transfer from the unfrozen region (the cryoprobe is
inactive during the thawing stage). It can be seen from Fig. 2 that the dependency of the solidus front
location in the cryoprobe cooling rate constant, D, is significant in the short term only. It can also be
seen that the solidus front propagates very fast backwards during the beginning of the thawing stage. By
contrast, the liquidus front (not shown), which is defined by the upper boundary of the phase transition
temperature range, does not move so rapidly backwards. In fact, the thickness of the phase transition
layer, defined by the liquidus and solidus fronts, increases significantly during thawing, and may occupy
a large portion of the hollow sphere defined by the liquidus front and the cryoprobe surface.

Fig. 3 shows the temperature distributions in the solid for different solidus front locations, during
freezing and thawing, which are the results from a single freeze/thaw cycle. It can be seen from Fig. 3
that very different temperature distributions prevail during freezing and thawing, for any given interface
location. The temperature distribution during thawing appears far more moderate than during freezing.
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Fig. 1. Cryoprobe temperature forcing function.
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The distributions in the total stress components (normalized by the elasticity modulus) are depicted in
Figs. 4 and 5 for a number of positions of the solidus front. Similarly, the deviatoric stress components
are shown in Fig. 6. The dashed curves correspond to freezing, and the solid curves correspond to
thawing. There is a rather dramatic difference between freezing and thawing; these differences can be
attributed to the now proper accounting for the strain that contributes to stress in the solid phase. As
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Fig. 2. Time evolution of solidus front location /.
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Fig. 3. Temperature distribution at various time instants (indicated by solidus front location) during freezing and thawing, where
Ty, is the solidus front temperature.

required by this theory, both stresses are zero at the solidus front during freezing. By contrast, only the
radial stress g, is zero at the solidus front during thawing. The radial stress is always compressive, while
the circumferential stress gy can be compressive or tensile.
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Fig. 4. Radial strain at various time instants during freezing and thawing.
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From these distributions one can draw only qualitative conclusions regarding failure, since departures
from idealized elastic behavior will eventually occur. For example, the material can deform plastically
with micro-cracks appearing (as found from compression testing of frozen tissues by Rabin et al., 1996,
1997a); under tensile stresses, one expects macroscopic cracks to form. In either case, the stress
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Fig. 6. Deviatoric stress components during freezing and thawing at various time instants.
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Fig. 7. Function g as a function of the radius for different cooling rate constants.

distributions will depart from those predicted here once plasticity or cracking occur. With this caution in
mind, one can see from the plot of gy that cracks, should they appear during freezing, will do so near
the probe. Since the tensile stress drops off rapidly with radius, these cracks should be confined to the
probe region. This is observed qualitatively in our experiments. On the other hand, once thawing
initiates there is a rapid rise in the tensile stress in the circumferential direction, which quickly becomes
maximum near the solidus front. Since the tensile stresses do not drop off rapidly with radius (they are
substantial over much of the frozen region, in contrast to freezing), one would not be surprised to find
cracks throughout the frozen region; again, this was observed. The radial stress, however, is always
compressive but its magnitude increases significantly during thawing. Note that the rapid change in
deviatoric stress distribution at the beginning of thawing is associated with extremely high strain rates;
the strength of the frozen material is expected to decrease with increase in the strain rate.

The function g shown in Fig. 7, is proportional to the strain difference which existed at a point in
space when the material there solidified. The relatively high values of this function explain why the
stresses get high values even when the temperature distribution decays to the solidus front temperature.
The effect of the cryoprobe cooling rate on the function g can also be seen in Fig. 7 which indicates that
the same general distribution of stresses is expected for relatively low and relatively high power
cryoprobes.

5. Summary and conclusions

A closed-form solution of the thermal stresses associated with an expanded freezing region and
subsequent thawing is presented. The solution is based on a more careful accounting for the strains that
contribute to the stress, namely including only those strains that occur after solidification. A parametric
study has been performed for typical parameters and conditions of cryosurgery around a spherical
cryoprobe. Results have shown that the stress distributions during the thawing stage are very different
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than those during freezing. Furthermore, it is shown that significant stresses remain in the frozen region
during thawing, and even when the temperature distribution in the frozen region decays to the solidus
temperature. The distributions are qualitatively consistent with limited cracking at the cryoprobe surface
during freezing and large scale cracking during thawing.
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